Active colloids orbiting giant vesicles

نویسندگان

چکیده

A self-propelled Janus colloid performs a persistent orbital motion around giant unilamellar vesicle, even when the vesicle size is comparable to particle size.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Third Giant Planet Orbiting Hip 14810

We present new precision radial velocities and a three-planet Keplerian orbit fit for the V = 8.5, G5 V star HIP 14810. We began observing this star at Keck Observatory as part of the N2K Planet Search Project. Wright et al. (2007) announced the inner two planets to this system, and subsequent observations have revealed the outer planet planet and the proper orbital solution for the middle plan...

متن کامل

Emergent behavior in active colloids

Active colloids are microscopic particles, which self-propel through viscous fluids by converting energy extracted from their environment into directed motion. We first explain how artificial microswimmers move forward by generating near-surface flow fields via self-phoresis or the self-induced Marangoni effect. We then discuss generic features of the dynamics of single active colloids in bulk ...

متن کامل

Giant vesicles in electric fields

This review is dedicated to electric field effects on giant unilamellar vesicles, a cell-size membrane system. We summarize various types of behavior observed when vesicles are subjected either to weak AC fields at various frequency, or to strong DC pulses. Different processes such as electrodeformation, -poration and -fusion of giant vesicles are considered. We describe some recent development...

متن کامل

Driven motion of colloids in active microrheology

In active microrheology, a strong external force is applied to a colloidal probe immersed in a complex fluid, so that among other quantities the nonlinear force-velocity relation can be measured. It provides information on the local viscoelastic properties of the complex fluid or soft solid. Generally, in dense fluids, the probe’s friction coefficient decreases strongly with increasing force [1...

متن کامل

Giant Vesicles Compressed by Actin Polymerization

Actin polymerization plays a critical role in generating propulsive force to drive many types of cell motility. The discovery of actin based motility of the bacterial pathogen Listeria monocytogenes has lead to clearer understandings of the essential ingredients required for cell motility. The biophysical mechanisms by which these proteins generate forces is the subject of intense investigation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Soft Matter

سال: 2021

ISSN: ['1744-683X', '1744-6848']

DOI: https://doi.org/10.1039/d0sm02183k